SILICON-29 NMR CHEMICAL SHIFTS IN ORGANOSILICON COMPOUNDS CONTAINING CH2CI GROUP*

J.SCHRAML, J.VČELÁK and V.CHVALOVSKÝ

Institute of Chemical Process Fundamentals Czechoslovak Academy of Sciences, 165 02 Prague 6 - Suchdol 2

Received July 23rd, 1973

²⁹Si-, ¹³C- and ¹⁹F-NMR chemical shifts are reported for series of $(CH_3)_{3-n}X_nSiCH_2Cl$ compounds with X = Cl and F. The substituent effect of the CH_2Cl group on the ²⁹Si-chemical shift varies with *n* in the two series of compounds investigated.

Lately, carbofunctional alkylsilanes have received considerable attention¹⁻⁶ various methods being used for the elucidation of the bonding situation in these compounds. Among the methods used ²⁹Si- and ¹³C-NMR appear promising, but before their potential could be fully exploited to the advantage of structural (and analytical) chemistry much more data than it is available now⁶⁻²¹, should be accumulated. This need of more data has been recently demonstrated¹¹ when the limited sets of ²⁹Si chemical shift data obtained in two laboratories^{9,11} were said¹¹ to lead to contradictory spectral assignments in chloromethylpentamethyldisiloxane and different signs of substituent effect of CH₂CI group.

In order to provide more data and perhaps better insight into the controversial substituent effect of CH_2Cl group on the ²⁹Si shielding the compounds of the type $(CH_3)_{3-n}X_nSiCH_2Cl$ with X = Cl and F were measured.

EXPERIMENTAL

Compounds

All the studied compounds were prepared by standard techniques. Some details of the preparation and other properties of the compounds can be found elsewhere^{16,22,23}.

NMR measurements

²⁹Si and ¹³C spectral data reported here were obtained using Bruker HFX 90 spectrometer. ¹³C- and ²⁹Si- NMR spectra were measured with the spectrometer ¹H locked, the former spectra were recorded at 22-62 MHz in the Fourier transform mode, the latter spectra were obtained by repetitive scanning and averaging (in a CAT) the frequency stabilized slow-passage, absorption

^{*} Part CIX in the series Organosilicon compounds; Part CVIII: J. Organometal. Chem. 51, C5 (1973).

mode spectra at 17.87 MHz. The compounds were measured in 10 mm sample tubes containing mixtures of 90% (vol.) of the compound and 10% of tetramethylsilane as an internal standard and ¹H lock. ¹⁹F- NMR spectra were measured at 56.4 MHz (Varian A 56/60, 5 mm sample tubes) using CCl₃F as internal standard.

RESULTS AND DISCUSSION

Contained in Table I are the carbon-13, fluorine-19 and silicon-29 chemical shifts for the studied compounds, included are also silicon-29 chemical shifts in $(CH_3)_{3-n}X_mSiCH_3$ compounds (taken from literature) and chemical shift increments of CH_2CI group calculated according to Eq. (1).

$$\Delta\delta(\mathrm{Si}) = \delta(\mathrm{Si})(\mathrm{for} \ \mathrm{Me}_{3-n}\mathrm{X}_{n}\mathrm{Si}\mathrm{CH}_{2}\mathrm{Cl}) - \delta(\mathrm{Si})(\mathrm{for} \ \mathrm{Me}_{4-n}\mathrm{X}_{n}\mathrm{Si})$$
(1)

This increment is a collective measure of the substituent effect (either direct or indirect) of the CH₂Cl group on the silicon-29 shieldings.*

The important features of the data of Table I are as follows:

I) The dependences of silicon-29 chemical shifts on n in both series of chloromethylsilanes show overall pattern ("sagging") similar to that observed⁸ in the series of methylchlorosilanes and methylfluorosilanes, though

2) the substituent effect, $\Delta\delta(Si)$, is not constant, *i.e.* the substituent effects are not directly additive in the series studied. The substituent effect varies with *n* in both series of compounds similarly, *i.e.* it changes its sign and its value becomes more negative as *n* increases. In contrast to this

3) the carbon-13 chemical shifts show different trends in the two series of compounds.

In comparison with the silicon-29 chemical shifts (the compound with X = Cl) measured elsewhere¹⁶, the higher precision achieved in the present work resulted only in minor corrections of the values (1·1 p.p.m. at the maximum) and has not affected the trends observed¹⁶. The only three values of $\Delta\delta(Si)$ available for the series with X = F seem to suggest that the substituent effect depends stronger on *n* in this series than in the series with X = Cl resembling thus the series with $X = OC_2H_5$ or $OC(O)CH_3$.¹⁶. (The individual values of the substituent effect that are based on the literature data⁸ should be taken with a reserve since newer results^{10,16} show that in some infavourable cases the data of ref.⁸ are subject to errors as large as 4 p.p.m.).

268

^{*} The substituent effect thus defined is identical to the substituent chemical shift (SCS) of chlorine as defined by Dewar and Marchand²⁴. The reason for our preference to call the quantity the substituent effect of the CH₂Cl group is that it emphasises the fact that the chlorine is not directly bonded to the silicon atom.

TABLE I

Silicon-29, $\delta(Si)$, Carbon-13, $\delta(C)$, and Fluorine-19, $\phi(F)$, Chemical Shifts⁴ and Substituent Increments, $\Delta\delta(Si)^b$, for $(CH_3)_3_{-n}X_nSiCH_2Cl$ and $(CH_3)_3_{-n}X_nSiCH_3$ Compounds

Group X	n	$Me_{3-n}X_nSiCH_2Cl$				$Me_{4-n}X_nSi$	
		δ(C)		((7))	8/01)		
		CH3	CH ₂	<i>φ</i> (F)	δ(Si)	δ(Si)	Δδ(Si)
Cl	0	- 3·04	+ 30.57	_	+ 2.79	0.00	+ 2.79
	1	-0.13	+30.20		+23.08	$+29.9^{c}$	- 6.8
	2	+2.85	+30.75		+21.48	+ 31.8°	-10.3
	3	-	+31.30		+ 1.65	+12.2°	-10.6
F	1	- 3·31	+28.27	-161·56	+24.83	$+30.5^{d}$	— 5·7 ^d
	2	-6.81	+24.31	-138.54	— 9·03	$+ 4.5^{d}$	-13·5 ^d
	3	_	+18.13	-143·99	-71.34	e	

^{*a*} Chemical shifts in p.p.m. positive value corresponds to a downfield shift. ¹³C- and ²⁹Si- shifts are relative to internal tetramethylsilane with a maximum error ± 0.1 p.p.m. ¹⁹F-shifts are relative to external CCl₃F with a maximum error ± 0.03 p.p.m. ^{*b*} Substituent increment $\Delta\delta(Si)$ defined by Eq. (1). ^{*c*} Value taken from ref.¹⁶. ^{*d*} Value based on the data of ref.⁸. ^{*e*} Value not available.

The substituent effect of the CH₂Cl group has the sign expected on the electronegativity grounds only if n = 0. In order to explain the negative sign in the other cases it was suggested¹⁷ that the CH₂Cl group enhances the back bonding X—Si bringing about an increase in the shielding. If it is really so, then the stronger dependence of the substituent effect in the series with X = F reflects the well known fact that fluorine is better $(p \rightarrow d)_{\pi}$ donor than chlorine. On the other hand, other interpretations of silicon-29 chemical shifts have been put forward^{18,25}. These two interpretations, though contradictory in some sense, do not consider $(p \rightarrow d)_{\pi}$ bonds to play any major role in determining silicon-29 chemical shifts. Therefore any detailed interpretation of the present results must avait till either the shifts are better understood or more data are available for a meaningful comparison to be made.

The authors are most grateful to Prof. D. Kummer, Technische Hochschule, Karlsruhe, for measuring the spectra.

REFERENCES

- 1. Fialová V., Bažant V., Chvalovský V.: This Journal 38, 3837 (1973).
- Chvalovský V.: Plenary lecture at III. International Symposium on Organosilicon Chemistry, Madison U.S.A., 1972.

- 3. Komarov N. V., Roman V. K.: Uspechi Chim. 39, 1220 (1970).
- 4. Andrianov K. A., Petrashko A. I.: Organometallic Chem. Rev. 2, 383 (1967).
- Brook A. G.: Main Lecture at International Symposium on Organosilicon Chemistry, Prague, 1965; Pure Appl. Chem. 13, 215 (1966).
- Schraml J., Pola J., Chvalovský V., Mägi M., Lippmaa E.: J. Organometal. Chem. 49, C 19 (1973).
- Lauterbur P. C., in the book: Determination of Organic Structures by Physical Methods, (F. C. Nachod, W. D. Phillips, Eds), Vol. 2, p. 465. Academic Press, London 1962.
- 8. Hunter B. K., Reeves L. W.: Can. J. Chem. 46, 1399 (1968).
- 9. Engelhardt G., Jancke H., Mägi M., Pehk T., Lippmaa E.: J. Organometal. Chem. 28, 293 (1971).
- 10. McFarlane W., Seaby J. H .: J. Chem. Soc. Perkin Trans. II, 1561 (1972).
- 11. Scholl R. L., Maciel G. E., Musker W. K.: J. Am. Chem. Soc. 94, 6376 (1972).
- 12. Marsmann H. C.: Chemiker Ztg. 96, 288 (1972).
- 13. Marsmann H. C., Horn H. G.: Chemiker Ztg. 96, 456 (1972).
- 14. Marsmann H. C., Horn H. G.: Z. Naturforsch. 27b, 1448 (1972).
- Schraml J., Chuy N. D., Chvalovský V., Mägi M., Lippmaa E.: J. Organometal. Chem. 51, C 5 (1973).
- Lippmaa E., Mägi M., Engelhardt G., Jancke H., Chvalovský V., Schraml J.: This Journal, in press.
- Lippmaa E., Mägi M., Schraml J., Chvalovský V., Paper presented at X1th European Congress on Molecular Spectroscopy, Tallin, USSR, 1973.
- Engelhardt G., Jancke H., Lippmaa E., Mägi M.: Paper presented at XIth European Congress on Molecular Spectroscopy, Tallin, USSR, 1973.
- Ernst C. R., Buell G. R., Spialter L.: Paper presented at Organosilicon symposium, Deuton, U.S.A., 1973.
- 20, Levy G. C.: Paper presented at Organosilicon symposium, Deuton, U.S.A., 1973.
- 21. Lambert R. L., Jr., Seyferth D.: J. Am. Chem. Soc. 94, 9246 (1972).
- Jakoubková M., Reich P., Papoušková Z., Novák P., Pola J., Chvalovský V.: This Journal 38, 3471 (1973).
- 23. Včelák J., Chvalovský V.: Unpublished results.
- 24. Dewar M. J. S., Marchand A. P.: J. Am. Chem. Soc. 88, 3318 (1966).
- 25. Ljubimov V. S., Ionov S. P.: Ž. Fiz. Chim. 46, 838 (1972).

Translated by the autor (J. S.).